The Kirkjubæjarklaustur Midden Core (KBKL-A)

A PRELIMINARY REPORT (2022) SCOTT JOHN RIDDELL, UNIVERSITY OF ICELAND

Introduction

During the summer of 2022, a midden feature was uncovered at Kirkjubæjarklaustur by the Man and Nature in Iceland Archaeological Projec (Icelandic Research Fund: 2016-0285). Initial interpretation of ceramic material derived from the midden (no context) is dated to the medieval period (Professor Steinunn Kristjánsdóttir, personal communication), and is perhaps associated with the former convent of Kirkjubæjarklaustur. On this basis, in the autumn of 2022, Scott Riddell (PhD candidate, University of Iceland) was commissioned by the project to acquire a sediment core from the midden in order to analyse it for pollen. Pollen material derived from archaeological contexts can provide some insight into the use of plants in the past for medicinal, culinary, and dyeing purposes, as well provide some understanding of past vegetation and land use in the immediate vicinity of the archaeological feature (Bakels, 2020).

Site description

The archaeological excavation area is in the small town of Kirkjubærjarklaustur in south east Iceland, just beyond the south west wall of the church cemetery (54°6749,94 E, 36°5408,31 N). It is thought to lie within the former bounds of a medieval monastery. The immediate vicinity of the dig is currently a rank, unimproved grassland, incorporating *Alchemilla vulgaris*, *Equisteum* sp., *Galium* sp., Poaceae (dominant), *Potentilla anserina*, *Ranunculus acris*, *Rumex acetosella* and *Salix*. *Betula pubescens* growing in the cemetery overhangs the excavation area. A defunct livestock fence suggests that the area may have been grazed until fairly recently while there are also drainage features i.e. a culvert at the junction of Skríðuvellir and Klausturvegur.

The excavations of the summer had cut through the midden with particularly good exposure of a sedimentary sequence to the northeast (Fig.1) from which it was proposed a core could be extracted for pollen analysis. An initial visit to the site on the 12th of September 2022 found the excavation area flooded and no cores were taken. It was observed that *Equisetum* spp. had started to grow on the exposed sections even though only a few months had passed since they were excavated. A return visit to the site the following month (5th October) found the excavation area similarly flooded (to the water table) but it was subsequently pumped in order to allow full access to the exposed sections of the midden.

Two cores (KBKL-A and KBKL-B), each c. 1 m long, were extracted from the north eastern section of the midden (Fig 1). Note that the lower strata of the two cores lies beneath the current water table.

Fig. 1 The north eastern section of the midden at Kirkjubæjarklaustur indicating the approximate locations of the two cores (KBKL-A and KBKL-B).

Methods & Results

The top of KBKL-A begins at 86 cm depth while KBKL-B begins at 52 cm depth. This is because the sediments immediately above the midden strata are comprised of thinly stratified sand (sometimes interrupted by very thin soil layers and possibly midden material) that is difficult to extract as a core due to a lack of cohesion (Fig. 1 and Table 1.). Furthermore, these sandy layers are unlikely to harbour pollen suitable for analysis due to poor preservation conditions. Note also that the lower strata of KBKL-A and KBKL-B lie beneath the current water table.

KBKL-A is the primary core used for analysis as it has greater cohesiveness and integrity than KBKL-B (retained in cold storage). A detailed soil description is provided for KBKL-A (Table 2) based upon Troels-Smith as adapted by Aaby and Berglund (1986) and further amended to reflect the archaeological context. This represents an estimate of the organic and minerogenic content of the strata and is supplemented further by a consideration of humification (Shotyk, 1988) and colour (Munsell Soil Color Charts, 2009). The primary aim of this exercise is to identify organic layers within the strata that can be targeted for pollen sampling. It also provides an opportunity to identify tephra layers by which to refine the chronology of the sediments containing pollen (Thorarinsson, 1944), with further potential with regard to radiocarbon dating, macro-botanical, and invertebrate remains.

In total, 90 pollen samples were cut from KBKL-A (88-186 cm) of which 16 will be chemically processed and counted (March 2023) following Moore, Webb, and Collison (1991). In particular, the pollen of exotic utilitarian plant species (Kristjánsdóttir, Larsson, & Åsen, 2014) will be sought alongside cereal crops (Tweddle, Edwards, & Fieller, 2005) and indigenous Icelandic flora. Gaps in the pollen sampling sequence occur due to the presence of tephra layers, while the upper two centimetres (86-88 cm) of the core were possibly compromised when it was cut from the section at Kirkjubæjarklaustur.

Approximately 8 potential tephra layers were identified for KBKL-A (Table 2.), of which 6 were cleaned of humic material (10% NaOH) and sieved (63 μ m) in preparation for geochemical analysis (February 2023). Note that although there are clear layers of tephra in KBKL-A, a black/brown, angular, tephra is found throughout the core along with windblown silt and sand.

Twelve samples were cut from selected organic sediments (Table 3), rinsed in a solution of 5% NaOH, and sieved (250 μ m mesh) in order to acquire material for C¹⁴ analysis i.e. bone, wood, moss or seeds. No suitable material was found although KBKL-A retains potential for further investigation.

cm	KBKL-A	cm	KBKL-B	
0	Intersection of surface vegetation with sediments.	0	Intersection of surface vegetation with sediments.	
0-14	Dark brown soil with bands of black sand.	0-9	Dark brown soil with bands of black sand.	
14-52	Layers of loose black sand, occasionally truncated by thin layers of light brown soil.	9-30	Layers of loose black sand, occasionally truncated by thin layers of light brown soil.	
52-86	Compacted grey sand. Intermittent reddish (peat ash) material suggests that it might transition into the midden layers beneath.	30-52	Compacted grey sand. Intermittent reddish (peat ash) material suggests that it might transition into the midden layers beneath.	
86-186	Consolidated cultural layers (midden).	52-152	Consolidated cultural layers (midden).	
	Water table at c. 146 cm.		Water table at c. 90 cm.	

Table 1. General field description of strata of north east section of excavation sites atKirkjubæjarklaustur in relation to KBKL-A and KBKL-B.

Table 2. Sediment description for KBKL-A featuring strata (86-186 cm depth) from whichpollen and tephra samples have been extracted.

cm	Colour (Munsell)	Shotyk (1988)	Troels-Smith*	Note
86-90.5	10yr-2/1	Amorphous	Sh ³ , Ag ¹ , Th ⁺	Disturbance 86-88 cm
	(black)	(silt)		
90.5-91	5yr-6/4	Amorphous	n/a	Peat ash
	(light reddish brown)			
91-95	7.5yr-2.5/1	Amorphous	Sh³, Gs¹	
	(black)	(sand)		
95-95.3	n/a	n/a	n/a	Tephra (sampled)
95.3-106	7.5yr-2.5/1	Amorphous	Sh ² , Ag ¹ , Gg ⁺ , Th ⁺	Rootlets and red mottling (peat
	(black)	(silt)		ash)
106-109.2	10yr-2/2	Amorphous	Sh³, Ag ¹	
	(very dark brown)	(silt)		
109.2-110.5	n/a	n/a	n/a	Tephra
110.5-121	10yr-2/2	Amorphous	Sh ² , Ag ¹ , Gs ¹ , Th ⁺	
	(very dark brown)	(sand)		
121-121.3	n/a	n/a	n/a	Tephra (sampled)
121.3-129	10yr-2/2	Amorphous	Sh³, As ¹	Red mottling (peat ash)
	(very dark brown)	(clay)		
129-129.3	10yr-6/4	Amorphous	Sh ⁴	Red and yellow mottling
	(light yellowish brown)			(peat and dung ash)
129.3-132	10yr-2/2	Amorphous	Sh³, As ¹	Red mottling (peat ash)
	(very dark brown)	(clay)		
132-133.5	n/a	n/a	n/a	Tephra (sampled)
133.5-137.5	5yr-6/4	Amorphous	Sh ⁴	Oxidised iron (Fe)
	(light reddish brown)			
137.5-137.7	n/a	n/a	n/a	Tephra (sampled)
137.7-143	7.5yr-4/4	Amorphous	Sh³, As ¹	Red mottling (peat ash)
	(brown)	(clay)		
143-146	7.5yr-2.5/1	Amorphous	Sh ³ , Ag ¹ , Th ⁺	Charcoal flecks, soot, rootlets
	(black)	(silt)		Water table c. 146 cm
146-146.1	n/a	n/a	n/a	Tephra (sampled)
146.1-153	10yr-2/1	Amorphous	Sh ² , Ag ² , Gg ⁺ , Th ⁺	Equisetum spp. stem and red
	(black)	(silt)		mottling (peat ash)
153-164	2.5yr-2.5/1	Amorphous	Sh ² , Ag ² , Gg ⁺	Stone ≤ 2 cm (angular)
	(black)	(silt)		
164-169	7.5yr-2.5/2 (very dark	Amorphous	Sh³, Ag ¹	Yellow mottling (dung ash), large
	brown)	(silt)		animal tooth
169-171	7.5yr-2.5/2	Amorphous	Sh⁴	Burnt bone and red mottling
	(very dark brown)			(peat ash)
171-174	7.5yr-2.5/2	Amorphous	Sh ³ , Ag ¹	Burnt bone and red mottling
	(very dark brown)	(silt)		(peat ash)
174-176	7.5yr-2.5/1	Amorphous	Sh ³ , Ag ¹	Burnt bone and red mottling
	(black)	(silt)		(peat ash)
176-177	n/a	n/a	n/a	Tephra (sampled)
177-186	7.5yr-2.5/1	Amorphous	Sh ³ , Ag ¹	
	(black)	(silt)		

*Sh (disintegrated organic substance), Th (plant material), Ag (silt), As (clay), Gs (sand), Gg (gravel)

 Table 3. Depths and description of material derived from KBKL-A (86-186 cm) sampled for C¹⁴

dating.

cm	Content*		
92-93	Sand and tephra		
107-108			
117-118	Conglomeration of humic material, clay, iron, charcoal and tephra.		
118-119			
119-120			
140-141	Peat ash layer-conglomeration of humic material, clay, iron, charcoal and tephra.		
146-147	Conglomerations of humic material, clay, iron, charcoal, burnt bone and tephra.		
147-148			
148-149	Conglomeration of humic material, clay, iron, charcoal (≤ 1 mm) and tephra.		
156-157			
157-158	Conglomeration of humic material, clay, iron, charcoal and tephra.		
158-159			

References

- Aaby, B., & Berglund, B. E. (1986). Characterisation of lake and peat deposits. In *Handbook of Holocene* Palaeoecology and Palaeohydrology. Chichester: John Wiley & Sons Ltd.
- Bakels, C. (2020). Pollen and Archaeology. In A. Henry (Ed.), Handbook for the Analysis of Micro-Particles in Archaeological Samples (pp. 203-224). Switzerland: Springer.
- Kristjánsdóttir, S., Larsson, I., & Åsen, P. A. (2014). The Icelandic medieval monastic garden-did it exist? Scandinavian Journal of History, 39(5), 560-579.
- Moore, P. D., Webb, J. A., & Collison, M. E. (1991). *Pollen Analysis*. Oxford: Blackwell Scientific Publications.

Munsell Soil Color Charts. (2009). Grand Rapids: Xrite.

- Shotyk, W. (1988). Review of inorganic geochemistry of peats and peatland waters. *Earth Science Reviews*, 25, 95-176.
- Thorarinsson, S. (1944). Tefrokronologiska studier på Island: Þjórsárdalur och dess förödelse. *Geografiska annaler, 26*(1-2), 1-217.
- Tweddle, J. C., Edwards, K. J., & Fieller, N. R. (2005). Multivariate statistical and other approaches for the separation of cereal from wild Poaceae pollen using a large Holocene dataset. *Vegetation history and Archaeobotany*, *14*(1), 15-30.